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Monte Carlo simulation of disordered one dimensional systems 
with long range antiferromagnetic interactions 

by S. ROMANO 
Department of Physics “A. Volta”, The University, and unita 

‘G.N.S.M.-C.N.R./C.I.S.M.-M.P.I., via A. Bassi 6, 1-27100 Pavia, Italy 

(Received 24 April 1989; accepted I0 June 1989) 

We consider a classical system, consisting of m-component unit vectors (m = 2 
and 3) ,  associated with a one dimensional lattice {uk I k E Z }  and interacting via 
translationally and rotationally invariant pair potentials of the form 

V = y k  = C E I ~  - kl-P(u,.uk), c = f 1, E > 0, p > 1. 

The system has been proven rigorously to possess an orientationally ordered phase 
stable at low but finite temperature when c = - 1, 1 < p < 2, and to disorder at 
all finite temperatures for c = f 1 and p 2 2. This theorem also holds for the 
corresponding spherical model, whereas, in the Ising model, the ordered phase 
survives for 1 < p < 2. We report here Monte Carlo simulation results for the 
antiferromagnetic models defined by c = + 1, p = 2, rn = 2 and 3 .  Comparison 
with their exactly soluble nearest neighbour counterparts shows that the long 
range antiferromagnetic interaction significantly weakens finite range correlations; 
this effect is more pronounced for m = 3 than for 2. 

1. Introduction 
Over the past 20 years, the study of spin systems associated with a low dimensional 

lattice and interacting via long range potentials has attracted a significant amount of 
theoretical work. The present paper continues along this line, studying potential 
models known rigorously to disorder at all finite temperatures, and using simulation 
techniques to elucidate their physical properties. 

We consider a classical system, consisting of m-component unit vectors (classical 
spins) associated with a one dimensional lattice { u k  I k E Z }  and interacting via a 
translationally and rotationally invariant (i.e. O(m) invariant) pair potential of the 
general form 

‘ = y k  = f ( r J k ) Y ( Z J k ) 9  (1 4 
r = rJk = l j  - kl, z = zJk = uJ . uk. (1 b) 

We restrict our discussion to m = 2 and 3 (i.e. plane rotators and classical Heisenberg 
model), so that the orientation of the spins in an arbitrary laboratory frame can be 
defined by the usual polar angles {q}(m = 2) or (9, q}(m = 3). When m = 2, 
zlk = cos(qJ - q k ) ,  and equation (1) can be generalized slightly to give 

& = y k , L  = f(r,k)YICOS(L(qj - ( P k ) ) ] ,  (2) 

where L is an arbitrary positive integer. For assigned functional forms offand Y, all 
the potential models W, have the same partition function, and their structural 
properties can be defined in a way independent of L. 
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610 S. Romano 

In the thermodynamic limit, no orientationally ordered phase can survive at finite 
temperature if the functionfhas a finite range [l]. However, it has been pointed out 
[2] that the vanishing of order in the thermodynamic limit need not exclude its 
existence for a finite but macroscopically large sample: for example, it is sometimes 
possible to prove [2] that the relevant quantity (order parameter or transition tem- 
perature) vanishes in the thermodynamic limit like (l/lnN), where N is the number 
of particles in the system; spontaneous (or residual) ordering of a finite sample is also 
found simulations, at sufficiently low temperature, even with nearest-neighbour 
potential models [3-61. 

On the other hand, it is also well-known that a sufficiently long ranged potential 
can produce a transition to a truly ordered phase, stable at low but finite temperature 
[l]. To be more specific, we shall consider the inverse-power models 

y k  = C&r/kP7,k, c = 1, p > 1, & > 0 (3) 
where c defines the ferromagnetic or antiferromagnetic character of the interaction. 
Their behaviour has been extensively investigated, especially in the ferromagnetic case 
c = - 1 .  The ordered phase survives at finite temperature provided 

c = - 1 ,  1 < p < 2 ,  

c = f 1 ,  p 2 2  

whereas the system disorders at all finite temperatures when 

[7-113. In equation (3), the conditionsp = 1, c = - 1,  would produce a system with 
infinite ground state energy, and order at all temperatures. 

Similar results also hold for the spherical model [12]; in the corresponding Ising 
model, where the broken symmetry is discrete rather than continuous, the ordered 
phase survives for 1 < p < 2 [13, 141; rigorous bounds have also been established for 
the correlation functions in the disordered phases [15, 161. Simulation results for such 
systems are still comparatively scarce in the literature (e.g. [17-191). The correspond- 
ing antiferromagnetic long range models have been studied far less extensively (e.g 
[20-24]), and no such theorems entailing the existence of an ordering transition at 
finite temperature are known for them, nor are there numerical estimates of their 
physical properties. This is in marked contrast to the wealth of results available in the 
literature for their short range counterparts. 

We report here Monte Carlo calculations for the antiferromagnetic potential 
models defined byp = 2, m = 2 and 3, and aim at studying the effect of a long range 
interaction on finite range order, in comparison with their nearest neighbour counter- 
parts, for which exact solutions are known [25-271. Nearest neighbour ferro- and 
antiferromagnetic models are related by spin-flip symmetry, and possess essentially 
the same properties in the absence of external fields. The system’s ground state 
corresponds to a staggered configuration (i.e. with spins pointing alternatively up and 
down), which can be defined by 

and whose energy, in units E per particle, is in both cases [28] 
m 

U,* = 1 (- l)’j-* = -1(2) = -n2/12 = -0.8225. (5 )  
j = l  
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Simulation of one dimensional systems 61 1 

The named theorems have been proven for (ferro)magnetic interactions, i.e. 
Y(z) = z in equation (l), and are supplemented by other theoretical treatments (e.g. 
renormalization group), whereas no such results are known for rn = 3, Y ( z )  = Pz(z), 
which is of more direct interest in the theory of nematics. On the other hand, owing 
to the symmetry properties of plane rotators (equation (2)), magnetic results for them 
automatically imply a nematic counterpart [17, 181, so that, for example, the plane 
rotator ground state in equation (4) can also be regarded as an antinematic one, 
consisting of two interpenetrating sublattices with mutually orthogonal directors. 

2. Computational aspects 
Calculations were performed using periodic boundary conditions, so that the 

energy of a configuration was summed in closed form by means of the identity [29] 

As a compromise between available computational resources and desired accuracy, 
we have used 1000 particles. At the lowest temperature investigated, calculations were 
started from the ground state configuration; dimensionless reduced temperatures and 
potential energies are given by 

T* = kT/&, U* = (V)/(N&), (7) 
where ( V )  is the mean sample energy and U* is the mean energy per particle. 
Calculations were performed in order of increasing temperature, i.e. the equilibrated 
configuration produced at one temperature was used to start both the production run 
at the same temperature and the equilibration run at the next higher one. Equilibration 
runs took between 2000 and 4000 cycles (where one cycle corresponds to N attempted 
moves), and production runs took between 4000 and 10000 cycles; subaverages for 
evaluating statistical errors were calculated over macrosteps consisting of 200 cycles. 

Calculated quantities include potential energy, configurational specific heat C, 
(both as a fluctuation quantity and by least-square fitting and numerical differ- 
entiation of the energy), magnetic moments and orientational correlation functions. 
Magnetic moment and staggered magnetic moment are defined by 

(8) ) 
N 

M = (l /N) c Uk , M’ = (1/N) 1 (- l)kUk , 
( k y l  ) ( k = l  

M monitors ferromagnetic order, whereas M’ accounts for the antiferromagnetic 
order. The orientational correlation functions are defined by 

= (PL(uj.u,)), m = 3, 

GL@) = as functions of r = l j  - kl (9) 

where TL and PL denote Tchebyshev and Legendre polynomials, respectively. Calcu- 
lations were carried out for L = 1 and 2, and the correlation functions were com- 
puted at a few selected temperatures (in order to save computer time), once every 
second cycle. For graphical convenience, we have defined and plotted the more 
smoothly varying function 

E,(r)  = (- l)rG,(r).  (10) 
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612 S. Romano 

The corresponding m-component nearest neighbour models defined by [25-271 

w = cz ( 1  1) 

have been solved exactly for arbitrary m; we report here some formulae, and use them 
for comparison with our simulation results. The partition function for an assembly 
of N spins is 

Q N ( T )  = [T(m/2)(a/2)1-m'21m,2-l(a)]N-'; a = - c/T*. (12) 

u* = C f Y ,  f? = Zm,*(4/Zm,2- , (a) ,  (13) 

cuike = "(1  - fm(a)[(m - l)/a + fm<a>I>. (14) 

Potential energy and specific heat per particle are given by 

The specific heat tends to the limit (m - 1)/2 as T* tends to zero, and has an 
asymptotic inverse square behaviour as T* goes to infinity; for m = 1 and 2, C, 
exhibits a maximum at finite temperature, which becomes a broad flat region for 
m = 3, and disappears altogether for m > 3; for m = 2, we have T& = 0.4306, 
C,( T,,,,,) = 0.67992 k. The orientational correlation functions G, ( r )  decay expo- 
nentially with distance according to 

G , ( r )  = [f;&)l'l (1 5 )  

because of the nearest neighbour character of the interaction, GI (1) coincides 
in magnitude with the energy; we also give formulae for higher-order correlation 
functions when m = 2 and 3: 

Here Ik are modified Bessel functions of order k [28]; taking into account the sym- 
metry properties of the functions ZL and PL, we can again recognize that the sign of 
c is immaterial, i.e. that, for given m, ferromagnetic and antiferromagnetic nearest 
neighbour models have essentially the same properties. 

3. Results 
Results for the potential energy are plotted in figure 1, together with the analytical 

results for the nearest neighbour models; as the temperature increases, our energy 
results tend to their nearest neighbour counterparts from below, and show an overall 
qualitative similarity with them. In order to make' this point more precise, let 
e = e(m, T*) denote the ratio between the energy of a long range model and the 
energy of its nearest neighbour counterpart, both being considered at the same 
reduced temperature T*. At very low temperatures e is essentially the ratio of the 
ground state energies, i.e. q(2) (see equation (5)) ,  then it decreases with temperature 
down to 0.75, and again increases with temperature, being closer to one for m = 3 
than for m = 2. The specific heat results reported here (see figure 2) were obtained 
by least-square fitting and numerical differentiation of the energy; the corresponding 
fluctuation quantities agree with them to within their statistical uncertainty (up to 
10 per cent). Figure 2 shows both similarities and differences between the potential 
models considered here: on the one hand, the zero temperature limits of the specific 
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Figure 1 .  Results for the potential energy: +: present model, m = 2; X: present model, 
rn = 3; continuous curve: nearest neighbour model, m = 2; dashed line: nearest neighbour 
model, rn = 3. The relative statistical error is usually smaller than 0.25 per cent. 

heat for long range systems agree with their nearest neighbour counterparts, and the 
curve for m = 2 exhibits a peak at T* = 0.25, somewhat lower than its nearest 
neighbour counterpart; on the other hand, the specific heat of the three-component 
long range model depends linearly on temperature for T* < 0.15, whereas its nearest 
neighbour counterpart exhibits a constant value in the same temperature range. 

As for the residual order, we have found all of the components of M to be smaller 
than 0.005 in magnitude, as they should since the interaction is antiferromagnetic; for 
T* 3 0.2, all components of M were smaller than 0.01 in xagnitude; at lower 
temperature, the component with the largest magnitude may range up to 0.15; on the 
whole, the residual order remains tolerable. Our system possesses no long range order, 
and its orientational correlation functions show some short range order, quickly 
decaying with temperature; there is no unique quantitative definition of this property, 
so we have decided to report both the values of the correlation functions at nearest 
neighbour separation (see figures 3 and 4), and the fit of the overall behaviour of E,  ( r )  
with appropriate functional forms. G,(r)  quickly decays to zero, even at the lowest 
temperature investigated (see figure 51, whereas we found IG, (r)l 9 0.001 for 1y1 = 2, 
T* 2 1, r 2 5;  for m = 3, this happens at T* B 0.6. The results for ,?,(I) (see 
figure 3) can be analysed by defining the appropriate ratio e, which turns out to be 
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614 S. Romano 

Figui .e 2. Configurational specific heat. + : present model, rn = 2; X: present model, rn = 3; 
continuous curve: nearest neighbour model, rn = 2; dashed line: nearest neighbour 
model, m = 3. The relative statistical error is usually smaller than 0.25 per cent. 

one at zero temperature, to decrease with temperature down to 0.85, and again to 
increase with increasing temperature, being closer to one for m = 3 than for m = 2: 
among the reported properties, this shows the greatest similarity between long range 
and nearest neighbour models. A similar analysis can be applied to G,(1) (see 
figure 4), and the ratio e shows the same qualitative behaviour, but here its minimum 
can be as low as 0.65. 

It has also been proven [15, 161 that, for some inverse power potential models 
including the present ones, 

at  sufficiently high temperature. At sufficiently low temperatures, we have fitted E, ( r )  
using the functional form 

Here c, compensates for the residual order, and the function h is consistent with 
the rigorous correlation inequality (see equation (1 7)). The fitting parameters were 
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Figure 3. Results for E , ( I )  versus temperature. t: present model, m = 2; X: present model, 
m = 3; continuous curve: nearest neighbour model, m = 2; dashed line: nearest neighbour 
model, m = 3. The relative statistical error is usually smaller than 0.25 per cent. 

determined using the general non-linear least-square program MINUIT in the CERN 
library; some of them are reported in the tables. At the lowest temperature inves- 
tigated, the power exponent q was found to be essentially zero, i.e. the decay was 
purely exponential. To comment on the meaning of tables 1 and 2, we consider the 
ratio 

which is close to one at nearest-neighbour separation (see figure ?), and may typically 
drop by a factor ten as r increases to fifteen. 

To conclude, we have studied two antiferromagnetic models interaction via long 
range potentials and known rigorously to disorder at all finite temperatures. Simu- 
lation results for thermodynamic properties show broad qualitative similarities 
between the models and with their nearest neighbour counterparts, whereas simu- 
lation results for the structural properties show greater qualitative differences, and 
point to the conclusion that the very long range nature of the antiferromagnetic 
interaction significantly weakens finite range correlations in comparison with the 
nearest neighbour counterparts; this effect is more pronounced form = 3 than for 2. 
For another comparison, we mention the ferromagnetic counterparts of the present 
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Figure 4. Results for G,( I )  versus temperature. + : present model, m = 2; X: present model, 
rn = 3; continuous curve: nearest neighbour model, rn = 2; dashed line: nearest neighbour 
model, rn = 3. The relative statistical error is usually smaller than 0.25 per cent. 

0.125 
0.250 
0.375 
0.500 
0.625 
0.750 
1 .ooo 

0.00 
0.10 
0.13 
0.25 
0.64 
1.24 
1.30 

k 0.03) 

Table 1. Fitting parameters in equation (18), for various temperatures, for the two 
component model; s,, refers to the nearest neighbour model, whose E, decays 
exponentially [equation (15)]. At T* = 0.125, q is zero to within kO.0005. 

T* 4 S Snn 

0.138 0.067 
0.264 0.147 
0.439 0.246 
0.574 0.360 
0.677 0.478 
0.650 0.594 
1.047 0.807 

& 0.006) 

models ( p  = 2, c = - 1 in equation (3)), where finite range correlations are signifi- 
cantly strengthened, possibly to the extent of producing a transition to a low tem- 
perature phase with inverse power decay of correlations and infinite susceptibility 
[30, 311. Neither the existence nor the absence of an ordering transition at  finite 
temperature have been proven for the antiferromagnetic models defined by 
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+ 

0 4 8 12 
r 

Figure 5. Plots of the orientational correlation functions for the three component model, at 
the temperature T* of 0.25. (a) El(r);  (b) G2(r); the results for its nearest neighbour 
counterpart are E , ( r )  = (0.751)’; G,(r) = (0.437)’; the correlation functions G,(r) are 
defined in the text. 

Table 2. Fitting parameters in equation (18), for various temperatures, for the three 
component model; s,, refers to the nearest neighbour model, whose E, decays 
exponentially [equation (15)]. At T* < 0.100, q is zero to within 5 0.0005. 

T* 4 S snn 

0.050 
0.100 
0.150 
0.200 

0.250 
0.300 
0.350 
0.400 
0.500 

0.000 
0.000 
0.020 
0.030 

( f 0.005) 
0.12 
0.21 
0.48 
0.60 
0.67 

( f 0.03) 

0.1 12 
0.203 
0.291 
0.410 

( f 0.005) 
0.49 
0.52 
0.60 
0.63 
0.64 

(& 0.03) 

0.05 1 
0.105 
0.163 
0.223 

0.287 
0.353 
0.42 1 
0.488 
0.622 

1 c p < 2 in equation (3); our  preliminary simulation results €or p = 312 suggest 
disorder a t  all finite temperatures. 

The present calculations were carried out on, among other machines, a VAX 8350 
computer, belonging to the Sezione di Pavia of Istituto Nazionale di Fisica Nucleare 
(INFN); computer time on a CRAY machine was allocated by the italian Consiglio 
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Nazionale delle Ricerche (CNR). The author wishes to thank Professor G. R. 
Luckhurst (Department of Chemistry, University of Southampton) for helpful 
discussion and suggestions. 

References 
[I] SINAI, YA. G., 1982, Theory qf Phase Transitions; Rigorous Results (Pergamon Press). 
[2] IMRY, Y., 1969, Ann. Phys., 51, 1. 
[3] DENHAM, J. Y., HUMPHRIES, R. L. and LUCKHURST, G. R., 1977, Molec. Crystals liq. 

[4] DENHAM, J. Y., LUCKHURST, G. R., ZANNONI, C., and LEWIS, J. W., 1980, Molec. Crystals 

[5] CHICCOLI, C., PASINI, P., and ZANNONI, C., 1988, Liq. Crystals, 3, 363. 
[6] TOBOCHNIK, J., and CHESTER, G. V., 1979, Phys. Rev. B, 20, 3761. 
[7] FROHLICH, J., ISRAEL, R., LIEB, E. H., and SIMON, B., 1978, Commun. math. Phys., 62, 1. 
[8] ROGERS, J. B., and THOMPSON, C. J., 1981, J. statist. Phys., 25, 669. 
[9] SIMON, B., 1981, J .  statist. Phys., 26, 307. 

Crystals, 41, 67. 

liq. Crystals, 60, 185. 

[lo] SIMON, B., and SOKAL, A. D., 1981, J.  statist. Phys., 25, 679. 
[Il l  JOYCE, G. S., 1969, J. Phys. C, 2, 1531. 
[I21 JOYCE, G. S., 1972, Phase Transitions and Critical Phenomena, Vol. 2, edited by C. Domb 

[I31 DYSON, F. J., 1969, Commun. math. Phys., 12,91; 1969, Zbid., 12,212; 1971, Zbid., 21,269. 
[14] IMBRIE, J. Z., and NEWMAN, C. M., 1988, Commun. math. Phys., 118, 303. 
[I51 TTO, K. R., 1982, J. statist. Phys., 29, 747. 
[I61 MESSAGER, A., MIRACLE-SOLE, S., and RUIZ, J., 1984, Ann. Znst. Henri Poincare-phys. 

[17] ROMANO, S., 1988, Liq. Crystals, 3, 1215. 
[18] ROMANO, S., 1987, Nuovo Cim. B, 100, 447. 
[I91 DAGOTTO, E., and MOREO, A., 1988, Phys. Rev. B, 37, 7873. 
[20] KAWABATA, C., 1978, Physics Lett. A, 69, 211. 

[2la] BAK, P., and BRUINSMA, R., 1982, Phys. Rev. Lett., 49, 249. 
[21b] BURINSMA, R., and BAK, P., 1983, Phys. Rev. B 27, 5824. 

and M. S. Green (Academic Press), Chap. 10. 

Theor., 40, 85 .  

[22] AUBRY, S., 1983, J.  Phys. C, 16, 2497. 
[23] KERIMOV, A. A., 1984, Theor. math. Phys., 58, 310. 
[24] RABIN, J. M., 1980, Phys. Rev. B, 22, 2027; 1980, Zbid., 22, 2429. 
[25] FISHER, M. E., 1964, Am. J .  Phys., 32, 343. 
[26] STANLEY, H. E.,1969, Phys. Rev., 179, 570. 
[27] VUILLERMOT, P. A., and ROMERIO, M. V., 1973, J. Phys. C, 6, 2922. 
[28] ABRAMOWITZ, M., and STEGUN, I. A,, 1964, (editors), Handbook of Mathematical 

[29] GRADSHTEYN, I. S., and RYZHIK, I. M., 1980, Table of Integrals, Series and Products 

[30] SIMANEK, E., 1987, Physics Lett. A, 119, 477. 

Functions (Dover). 

(Academic Press). 

[31a] ROMANO, S., 1988, Nuovo Cim. D, 10, 1459. 
[31b] BROWN, R., and SIMANEK, E., 1988, Phys. Rev. B, 38, 9264. 
[31c] ROMANO, S., Phys. Rev. B (in the press). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
2
8
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1


